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The estimation of remaining useful life (RUL) of a faulty component is at the center of system prognostics and health 
management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is 
lost. RUL prediction needs to contend with multiple sources of errors like modeling inconsistencies, system noise and 
degraded sensor fidelity, which leads to unsatisfactory performance from classical techniques like Autoregressive Integrated 
Moving Average (ARIMA) and Extended Kalman Filtering (EKF). Bayesian theory of uncertainty management provides a 
way to contain these problems. The Relevance Vector Machine (RVM), the Bayesian treatment of the well known Support 
Vector Machine (SVM), a kernel-based regression/classification technique, is used for model development. This model is 
incorporated into a Particle Filter (PF) framework, where statistical estimates of noise and anticipated operational conditions 
are used to provide estimates of RUL in the form of a probability density function (PDF). We present here a comparative 
study of the above mentioned approaches on experimental data collected from Li-ion batteries. Batteries were chosen as an 
example for a complex system whose internal state variables are either inaccessible to sensors or hard to measure under 
operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load 
conditions.  
 
Keywords: Battery prognostics, remaining useful life, uncertainty management, Autoregressive Integrated Moving 
Average, Extended Kalman Filtering, Relevance Vector Machine, Particle Filter. 

 
 
 
 
1. Introduction 
 

Batteries form a core component of many machines and are often times critical to the well being and functional 
capabilities of the overall system. Failure of a battery could lead to reduced performance, operational impairment 
and even catastrophic failure, especially in aerospace systems. A case in point is NASA’s Mars Global Surveyor 
which stopped operating in November 2006. Preliminary investigations revealed that the spacecraft was commanded 
to go into a safe mode, after which the radiator for the batteries was oriented towards the sun. This increased the 
temperature of the batteries and they lost their charge capacity in short order. This scenario, although drastic, is not 
the only one of its kind in aerospace applications. In fact, accurate estimates of the state-of-charge (SOC), the state-
of-health (SOH) and state-of-life (SOL) for batteries would provide a significant value addition to the management 
of any operation involving electrical systems. 

The phrase “battery health monitoring” has a wide variety of connotations, ranging from intermittent manual 
measurements of voltage and electrolyte specific gravity to fully automated online supervision of various measured 
and estimated battery parameters. In the aerospace application domain, researchers have looked at the various failure 
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modes of the battery subsystems. Different diagnostic methods have been evaluated, like discharge to a fixed cut-off 
voltage, open circuit voltage, voltage under load and electrochemical impedance spectrometry (EIS) (Vutetakis and 
Viswanathan, 1995). In the field of telecommunications, people have looked to combine conductance technology 
with other measured parameters like battery temperature/differential information and the amount of float charge 
(Cox and Perez-Kite, 2000).  

Other works have concentrated more on the prognostic perspective rather than the diagnostic one. Statistical 
parametric models have been built to predict time to failure (Jaworski, 1999). Electric and hybrid vehicles have been 
another fertile area for battery health monitoring (Meissner and Richter, 2003). Impedance spectrometry has been 
used to build battery models for cranking capability prognosis (Blanke et al., 2005). State estimation techniques, like 
the Extended Kalman Filter (EKF), have been applied for real-time prediction of SOC and SOH of automotive 
batteries (Bhangu et al., 2005).  A decision-level fusion of data-driven algorithms, like Autoregressive Integrated 
Moving Average (ARIMA) and neural networks, have been investigated for both diagnostics and prognostics 
(Kozlowski, 2003). As the popular cell chemistries changed from lead acid to nickel metal hydride to lithium ion, 
cell characterization efforts have kept pace. Dynamic models for the lithium ion batteries that take into consideration 
nonlinear equilibrium potentials, rate and temperature dependencies, thermal effects and transient power response 
have been built (Gao, Liu and Dougal, 2002). Not withstanding the body of work done before, it still remains 
notoriously difficult to accurately predict the end-of-life of a battery from SOC and SOH estimates under 
environmental and load conditions different from the training data set. This is where advanced regression, 
classification and state estimation algorithms have an important role to play. 

Support Vector Machines (SVMs) (Vapnik, 1995) are a set of related supervised learning methods used for 
classification and regression that belong to a family of generalized linear classifiers. The Relevance Vector Machine 
(RVM) (Tipping, 2000) is a Bayesian form representing a generalized linear model of identical functional form of 
the SVM. Bayesian techniques also provide a general rigorous framework for dynamic state estimation problems. 
The core idea is to construct a probability density function (PDF) of the state based on all available information. For 
a linear system with Gaussian noise, the method reduces to the Kalman filter. The state space PDF remains Gaussian 
at every iteration and the filter equations propagate and update the mean and covariance of the distribution.  
 
2. Algorithms 
 

2.1 Autoregressive Integrated Moving Average 
 
The Autoregressive Integrated Moving Average (ARIMA) modeling technique is a generalization of Autoregressive 
Moving Average or ARMA (Box and Jenkins, 1976). These models are fitted to time series data either to better 
characterize the data or to predict future points in the series. Theoretically, any time series which contains no trend 
or from which trend has been removed can be represented as consisting of two parts, a self-deterministic part, and a 
disturbance component. The self-deterministic part of the series can be forecasted from its own past by an 
autoregressive (AR) model with enough number of terms, p, while the disturbance component (the residuals from 
the AR model) can be modeled by a moving average (MA) with a large enough number of elements, q. Given a real 
valued time series xk where k is an integer index, an ARMA(p,q) model is given by: 

(1 – (α1L1 + α2L2 +…+ αpL
p))xk = (1 +(β1L1 + β2L2 +…+ βqL

q))ρk         (1) 

where, L | Lixk ≡ xk-i is the lag operator, α’s are the parameters of the AR part of the model, and  β’s are the 
parameters of the MA part. The error terms ρk are generally assumed to be independent, identically distributed 
variables sampled from a normal distribution with zero mean. 

ARMA modeling assumes the time series is weakly stationary. It is possible to handle non-stationary data by 
differencing it to a sufficient degree. If the series is differenced d times to achieve stationarity, the model is 
classified as ARIMA(p,d,q) and is described as: 

(1 – (α1L1 + α2L2 +…+ αpL
p))(1 – L)dxk = (1 +(β1L1 + β2L2 +…+ βqL

q))ρk       (2) 
The basic steps of ARIMA modeling are: 
• Identification: Ensure that the series is sufficiently stationary (free of trend and seasonality) by differencing d 

times, and specify the appropriate number of autoregressive terms, p, and moving average terms, q from the 
autocorrelation function (acf) and partial autocorrelation function (pacf) correlograms. 

• Estimation: Estimate the parameters (α’s and β’s) of AR and MA terms, usually by regression analysis. 



• Verification: Ascertain whether the model fits the historical data well enough. The model is used to forecast all 
of the extant values in the series. It is said to fit the series well if the differences between the actual values and 
the forecasted values are small enough and sufficiently random. 

 
2.2 Relevance Vector Machine 
 
In a given classification problem, the data points may be multidimensional (say ndim). The task is to separate them by 
an ndim-1 dimensional hyperplane. This is a typical form of linear classifier. There are many linear classifiers that 
might satisfy this property. However, an optimal classifier would additionally create the maximum separation 
(margin) between the two classes. Such a hyperplane is known as the maximum-margin hyperplane and such a 
linear classifier is known as a maximum-margin classifier. Nonlinear kernel functions can be used to create 
nonlinear classifiers (Boser, Guyon, and Vapnik, 1992). This allows the algorithm to fit the maximum-margin 
hyperplane in the transformed feature space, though the classifier may be nonlinear in the original input space.  

This technique was also extended to regression problems in the form of support vector regression (SVR) (Drucker 
et al., 1997). Regression can essentially be posed as an inverse classification problem where, instead of searching for 
a maximum margin classifier, a minimum margin fit needs to be found. Although, SVM is a state-of-the-art 
technique for classification and regression, it suffers from a number of disadvantages, one of which is the lack of 
probabilistic outputs that make more sense in health monitoring applications. The RVM attempts to address these 
very issues in a Bayesian framework. Besides the probabilistic interpretation of its output, it uses a lot fewer kernel 
functions for comparable generalization performance. 

This type of supervised machine learning starts with a set of input vectors {t}n=1…N and their corresponding targets  
{θ}n=1…N. The aim is to learn a model of the dependency of the targets on the inputs in order to make accurate 
predictions of θ for unseen values of t. Typically, the predictions are based on some function F(t) defined over the 
input space, and learning is the process of inferring the parameters of this function. In the context of SVM, this 
function takes the form: 
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where, w = (w1, w2, …,wM)
T is a weight vector and K(t, ti) is a kernel function. In the case of RVM, the targets are 

assumed to be samples from the model with additive noise: 
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where, εn are independent samples from some noise process (Gaussian with mean 0 and variance σ2). Assuming the 
independence of θn, the likelihood of the complete data set can be written as: 
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where, ΦΦΦΦ is the N x (N+1) design matrix with ΦΦΦΦ = [Φ(t1), Φ(t2), …, Φ(tn)]
T, wherein Φ(tn) = [1, K(tn, t1), K(tn, t2), 

…, K(tn, tN)]
T.   

To prevent over-fitting a preference for smoother functions is encoded by choosing a zero-mean Gaussian prior 
distribution ℘ over w: 
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with ηηηη a vector of N + 1 hyperparameters. To complete the specification of this hierarchical prior, we must define 
hyperpriors over ηηηη, as well as over the noise variance σ2. Having defined the prior, Bayesian inference proceeds by 
computing the posterior over all unknowns given the data from Bayes' rule: 
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Since this form is difficult to handle analytically, the hyperpriors over ηηηη and σ2 are approximated as delta functions 
at their most probable values ηηηηMP and σ

2
MP. Predictions for new data are then made according to: 
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2.3 Extended Kalman Filter 
 
For nonlinear systems or non-Gaussian noise, there is no general analytic (closed form) solution for the state space 
PDF. The extended Kalman filter (EKF) is the most popular solution to the recursive nonlinear state estimation 
problem (Jazwinski, 1970). In this approach the estimation problem is linearized about the predicted state so that the 
Kalman filter can be applied. In this case, the desired state PDF is approximated by a Gaussian, which may have 
significant deviation from the true distribution causing the filter to diverge.  

The nonlinear state transition and observation models need to be differentiable functions for the EKF. They can 
be represented as: 

xk = f(xk-1, uk, ωk) 

yk = h(xk, υk)                       (9) 
where, x denotes the state, y is the output or measurements, and ωk and υk are samples from a zero mean Gaussian 
noise distribution. The function f can be used to compute the predicted state from the previous estimate and similarly 
h can be used to compute the predicted measurement from the predicted state. Matrices of partial derivatives (the 
Jacobian), F and H for f and h respectively, are computed at each time step with current predicted states. These 
matrices are used essentially to linearize the non-linear functions around the current estimate. 

Fk = (∂f/∂x)|x k-1|k-1,uk  

Hk = (∂h/∂x)|x k|k-1                   (10) 

The EKF algorithm proceeds in two steps – the prediction step, in which the state transition model is used to 
propagate the state vector x into the next time step, and the update step where the measurement y is used to correct 
the prediction. The equations for the first step can be written as: 

x k|k-1 = f(x k-1|k-1, uk, 0) 

Pk|k-1 = FkPk-1|k-1Fk
T + Ωk                   (11) 

where, P and Ω are the covariance matrices of the predicted state estimate and the process noise ω. The update step 
can be expressed as: 

y k = yk – Hkxk|k-1 

Sk = HkPk|k-1Hk
T + Ψk  

Kk = Pk|k-1Hk
TSk

-1 

x k|k = x k-1|k-1 + Kky k  

Pk|k = (I - KkHk)Pk|k-1                    (12) 

where, Ψ is the covariance matrix of the observation noise υk and I is the identity matrix.  
In the EKF context a k-step future prediction is achieved by simply iterating through the prediction equations the 

requisite number of times. However, it is important to note that the EKF is not an optimal estimator. If the initial 
estimate of the state is significantly off-target, or if the process is modeled incorrectly, the filter may quickly 
diverge, owing to its linearization.  
 
2.4 Particle Filter 
 
In the Particle Filter (PF) approach (Arulampalam, 2002; Gordon, Salmond, and Smith, 1993) the state PDF is 
approximated by a set of particles (points) representing sampled values from the unknown state space, and a set of 
associated weights denoting discrete probability masses. The particles are generated and recursively updated from a 
nonlinear process model that describes the evolution in time of the system under analysis, a measurement model, a 
set of available measurements and an a priori estimate of the state PDF. In other words, PF is a technique for 
implementing a recursive Bayesian filter using Monte Carlo (MC) simulations, and as such is known as a sequential 
MC (SMC) method. 

Particle methods assume that the state equations can be modeled as a first order Markov process with the outputs 
being conditionally independent. This can be written as: 

xk = f(xk-1) + ωk 

yk = h(xk) + υk                       (13) 



where, x denotes the state, y is the output or measurements, and ωk and υk are samples from a noise distribution. 
Sampling importance resampling (SIR) is a very commonly used particle filtering algorithm, which approximates 
the filtering distribution denoted as p(xk|y0,…,yk) by a set of P weighted particles {(wk

(i),xk
(i)): i=1,…,P}. The 

importance weights wk
(i) are approximations to the relative posterior probabilities of the particles such that 
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The weight update is given by: 
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where, the importance distribution π(xk|x0:k-1,y1:k) is approximated as p(xk|xk-1). 
 
3. Application Domain 
 
The data used in this study had been collected from second generation 18650-size lithium-ion cells (i.e., Gen 2 cells) 
that were cycle-life tested at the Idaho National Laboratory under the Advanced Technology Development (ATD) 
Program (Christophersen et al., 2006), initiated in 1998 by the U.S. Department of Energy to find solutions to the 
barriers that limit the commercialization of high-power lithium-ion batteries. The cells were aged at 60% state-of-
charge (SOC) and various temperatures (25°C and 45°C).  We use the 25°C data as the baseline for training and the 
45°C data as the faulty sequence. This is a key in assessing the robustness of the different prognostic algorithms in 
the presence of un-modeled effects.  
 
3.1 Model Development 
 
Apart from the purely data-driven technique ARIMA, EKF and PF both require a system model. RVM is used to 
derive this model from the baseline data. The first step in model development is to extract features from sensor data 
comprising of voltage, current, power, impedance electro-chemical impedance spectrometry (EIS), frequency and 
temperature readings. These features are used to estimate the internal parameters of the battery model shown in 
Figure 1. The parameters of interest are the double layer capacitance CDL, the charge transfer resistance RCT, the 
Warburg impedance RW and the electrolyte resistance RE. In the dataset under study, RW and CDL showed negligible 
change over the ageing process and are excluded from further analysis. 
 

 
Figure 1 Lumped Parameter Model of a Cell 

 
The values of these internal parameters change with various ageing and fault processes like plate sulfation, 

passivation and corrosion. RVM regression is performed on parametric data collected from a group of cells over a 
long period of time so as to find representative ageing curves. Since we want to learn the dependency of the 
parameters with time, the RVM input vector t is time, while the target vector θ is given by the inferred parametric 
values. Exponential growth models, as shown in equation 16, are then fitted on these curves to identify the relevant 
decay parameters like C and λ: 

                    ),exp(
~

tC λθ =                   (16) 
where, θ  is the model predicted value of an internal battery parameter like RCT or RE. The overall model 
development scheme is depicted in the flowchart of Figure 2. 
 

CDL 

RCT RW 

RE 



 
Figure 2 Schematic of Model Development 

 
3.2 RUL Estimation 
 
The system description model developed using RVM is fed into both the EKF and PF algorithms. Data from the 
system sensors are mapped into system features which are subsequently used to estimate the RUL as explained 
below. The EKF and the PF use the parameterized exponential growth model, described in equation 16, for the 
propagation of the state estimates (equation 11) and particles (equation 13) in time, respectively. The EKF maintains 
C and λ as constant model parameters while the PF algorithm incorporates them as well as the internal battery 
parameters RE and RCT as components of the state vector x, and thus, performs parameter identification in parallel 
with state estimation. The values of C and λ learnt from the RVM regression are used as initial estimates for the 
particle filter. The measurement vector y is comprised of the battery parameters inferred from measured data. In the 
PF algorithm, resampling of the particles is carried out in each iteration so as to reduce the occurrence of degeneracy 
of particle weights. Taking advantage of the highly linear correlation between RE+RCT and C/1 capacity (as derived 
from data), predicted values of the internal battery model parameters are used to calculate expected charge capacities 
of the battery. The predictions are compared against end-of-life thresholds to derive the RUL estimates.  Figure 3 
shows a simplified schematic of the process described above. ARIMA simply uses the C/1 time series data to predict 
future points.  
 

 
Figure 3 Schematic of RUL Prediction 

 
4. Results 
 
The results for the model development section are presented in the form of four plots. Figure 4 shows the shift in 
electro-chemical impedance spectrometry (EIS) data of one of the test cells with ageing at 25°C. The nearly vertical 
left tails of the EIS plots are due to inductances in the battery terminals and connection leads. In some models this 
distributed inductance is represented in the form of a lumped inductance parameter in series with the electrolyte 
resistance RE. The tails on the right side of the curves arise from diffusion based cell transport phenomena. This is 
modeled as the parameter RW in Figure 1. Figure 5 shows a zoomed in section of the data presented above in Figure 
4 with the battery internal model parameters identified. Since the expected frequency plot of a resistance and a 
capacitance in parallel is a semicircle, we fit semicircular curves to the central sections of the data in a least-square 
sense. The left intercept of the semicircles give the RE values while the diameters of the semicircles give the RCT 
values. Figure 6 shows the output of the RVM regression along with the exponential growth model fits for RE and 
RCT. The use of probabilistic kernels in RVM helps to reject the effects of outliers and the varying number of data 
points at different time steps, which can bias conventional least-square based model fitting methods. Figure 7 shows 
the high degree of linear correlation between the C/1 capacity and the internal impedance parameter RE+RCT. We 
exploit this relationship to estimate the current and future C/1 capacities.  
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Figure 4 Shift in EIS Data with Ageing 
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Figure 5 Zoomed EIS Plot with Internal Battery Model Parameter Identification 
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Figure 6 RVM Regression and Growth Model Fit 
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Figure 7 Correlation between Capacity and Impedance 
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The implementation of the ARIMA(p,d,q) process begins with determining the values for p, d, and q. The data are 
roughly exponential in nature; d is chosen to be 2 in order to remove the non-stationarity approximately.  Figure 8 
shows the autocorrelation and partial autocorrelation plots from which both the p and q values are chosen to be 1. 
Higher orders do not improve the model fit any further. Figure 9 shows the ARIMA predictions at 36 weeks 
(squares) and at 52 weeks (circles). Although the RUL estimates are not too far off the real value, the confidence 
bounds are too wide to have significant practical value. The model-based EKF performs well in tracking the battery 
capacity despite the application of model parameters derived at 25°C to 45°C data as shown in Figure 10. However, 
it deviates badly when used for prediction (no measurement update step) while using the baseline model parameters. 
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Figure 8 Autocorrelation and Partial Autocorrelation 

Plots for ARIMA 
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Figure 9 ARIMA Prediction 
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Figure 10 EKF State Tracking and Prediction 

  
Figure 11 shows both the state tracking and future state prediction plots for the Particle Filter applied to the 45°C 

data.  Since the PF also identifies the current parameters, it shows that the estimated λ value for the RCT growth 
model (equation 16) is considerably larger than of the training data (collected at 25°C), and hence can be used for 
diagnosis. The threshold for fault declaration in the plot has been arbitrarily chosen. The diagnosis in this case is that 
the cell has undergone rapid passivation due to the elevated temperatures. Remaining-useful-life (RUL) or time-to-
failure (TTF) is derived by projecting out the capacity estimates (derived from the mapping shown in Figure 7) into 
the future (Figure 12) until expected capacity hits the certain predetermined end-of-life threshold. The particle 
distribution is used to calculate the RUL PDF by fitting a mixture of Gaussians in a least-squares sense. As shown in 
Figure 12, the RUL PDF improves in both accuracy (centering of the PDF over the actual failure point) and 
precision (spread of the PDF over time) with the inclusion of more measurements before prediction. 
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Figure 11 Particle Filter Output 
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Figure 12 Particle Filter Prediction 

 
5. Conclusions 
 
We were interested here in particular in conditions where un-modeled effects are present as manifested by the 
different degradation curve at 45°C. Although all algorithms were given the same amount of information to the 
degree practical, there were considerable differences in performance. Specifically, the combined Bayesian 
regression-estimation approach implemented as a RVM-PF framework has significant advantages over conventional 
methods of RUL estimation like ARIMA and EKF. ARIMA, being a purely data-driven method, does not 
incorporate any physics of the process into the computation, and hence ends up with wide uncertainty margins that 
make it unsuitable for long-term predictions. Additionally, it may not be possible to eliminate all non-stationarity 
from a dataset even after repeated differencing, thus adding to prediction inaccuracy. EKF, though robust against 
non-stationarity, suffers from the inability to accommodate un-modeled effects and can diverge quickly as shown. 
We did not explore other variations of the Kalman Filter that might provide better performance such as the 
unscented Kalman Filter. The Bayesian statistical approach, on the other hand, appears to be well suited to handle 
various sources of uncertainties since it defines probability distributions over both parameters and variables and 
integrates out the nuisance terms. Also, it does not simply provide a mean estimate of the time-to-failure; rather it 
generates a probability distribution over time that best encapsulates the uncertainties inherent in the system model 
and measurements and in the core concept of failure prediction. 
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